#include "WPILib.h" #include "Shooter.h" #ifndef BUTTON_LAYOUT #define BUTTON_LAYOUT #define TRIGGER 1 // Trigger button number #define THUMB 2 // Thumb button number #define RAMP_RAISE 3 // Button 3 for Raising Ramp #define RAMP_LOWER 4 // Button 4 to lower ramp. #endif // BUTTON_LAYOUT class Robot: public IterativeRobot { Talon left_drive, right_drive; CANTalon shooter1, shooter2, launch_spinny; RobotDrive drive; Shooter shooter; Joystick driver_stick, operator_stick; public: Robot(): left_drive(0), // Left DriveTrain Talons plug into PWM channel 1 with a Y-splitter right_drive(1), // Right DriveTrain Talons plug // left wheel 2 shooter1(11), // shooter drive 1 shooter2(10), // shooter drive 2 launch_spinny(12), drive(&left_drive, &right_drive), shooter( // initialize Shooter object. &shooter1, &shooter2, &launch_spinny), driver_stick(0), // right stick (operator) operator_stick(1) // left stick (driver) { } private: // instance variables bool pickupRunning; // don't want to spam the Talon with set messages. Toggle the pickup when a button is pressed or released. bool inverting; float shooter_power; LiveWindow *lw = LiveWindow::GetInstance(); SendableChooser *chooser; const std::string autoNameDefault = "Default"; const std::string autoNameCustom = "My Auto"; std::string autoSelected; void RobotInit() { chooser = new SendableChooser(); chooser->AddDefault(autoNameDefault, (void*)&autoNameDefault); chooser->AddObject(autoNameCustom, (void*)&autoNameCustom); SmartDashboard::PutData("Auto Modes", chooser); shooter1.Enable(); shooter2.Enable(); left_drive.SetInverted(true); right_drive.SetInverted(true); inverting = false; shooter_power = 0; } /** * This autonomous (along with the chooser code above) shows how to select between different autonomous modes * using the dashboard. The sendable chooser code works with the Java SmartDashboard. If you prefer the LabVIEW * Dashboard, remove all of the chooser code and uncomment the GetString line to get the auto name from the text box * below the Gyro * * You can add additional auto modes by adding additional comparisons to the if-else structure below with additional strings. * If using the SendableChooser make sure to add them to the chooser code above as well. */ void AutonomousInit() { autoSelected = *((std::string*)chooser->GetSelected()); //std::string autoSelected = SmartDashboard::GetString("Auto Selector", autoNameDefault); std::cout << "Auto selected: " << autoSelected << std::endl; if(autoSelected == autoNameCustom){ //Custom Auto goes here } else { //Default Auto goes here } } void AutonomousPeriodic() { if(autoSelected == autoNameCustom){ //Custom Auto goes here } else { //Default Auto goes here } } void TeleopInit() { } void TeleopPeriodic() { std::cout << "Ramp position: "<< launch_spinny.GetEncPosition() << std::endl; drive.ArcadeDrive(&driver_stick, true); // This is shit code for testing. Replace it with real code. if(operator_stick.GetRawButton(RAMP_RAISE)) { launch_spinny.Set(1); } else if(operator_stick.GetRawButton(RAMP_LOWER)) { launch_spinny.Set(-1); } else { launch_spinny.Set(0); } /* * Run the Shooter only while the THUMB button is held down on the operator stick. * the 'pickupRunning' boolean is there to prevent the shooter from calling PickUp * every itteration of the TeleopPeriodic method (once every 10ms!) * The pickup is disabled when the thumb button is released, but the code still * has 'pickupRunning' as true. */ if(operator_stick.GetRawButton(THUMB) && !pickupRunning) { shooter.PickUp(); pickupRunning = true; } else if(pickupRunning) { shooter.PickUp(false); pickupRunning = false; } /* * The 'inverting' variable is used to make sure that the drive train isn't getting * inverted every itteration of the TeleopPeriodic method while the button is held down. * This is important because the TeleopPeriodic method executes something like once every 10ms. * Thus, this if-else if pair make the button a toggle. */ if(driver_stick.GetRawButton(THUMB) && !inverting) { left_drive.SetInverted(!left_drive.GetInverted()); right_drive.SetInverted(!right_drive.GetInverted()); inverting = true; } else if(!driver_stick.GetRawButton(THUMB)) { inverting = false; } if(((1.0 - operator_stick.GetThrottle()) / 2.0) > shooter_power + 0.005 || ((1.0 - operator_stick.GetThrottle()) / 2.0) < shooter_power -0.005) { shooter_power = (1.0 - operator_stick.GetThrottle()) / 2.0; shooter.SetPower(shooter_power); } } void TestPeriodic() { lw->Run(); } }; START_ROBOT_CLASS(Robot)