This repository has been archived on 2020-09-21. You can view files and clone it, but cannot push or open issues or pull requests.
FRC2016-old/wpilib/cpp/current/include/HAL/Digital.hpp

140 lines
7.3 KiB
C++
Raw Normal View History

2016-01-28 11:33:19 -05:00
#pragma once
#include <stdint.h>
#include "HAL/cpp/priority_mutex.h"
enum Mode
{
kTwoPulse = 0,
kSemiperiod = 1,
kPulseLength = 2,
kExternalDirection = 3
};
priority_recursive_mutex& spiGetSemaphore(uint8_t port);
extern "C"
{
void* initializeDigitalPort(void* port_pointer, int32_t *status);
void freeDigitalPort(void* digital_port_pointer);
bool checkPWMChannel(void* digital_port_pointer);
bool checkRelayChannel(void* digital_port_pointer);
void setPWM(void* digital_port_pointer, unsigned short value, int32_t *status);
bool allocatePWMChannel(void* digital_port_pointer, int32_t *status);
void freePWMChannel(void* digital_port_pointer, int32_t *status);
unsigned short getPWM(void* digital_port_pointer, int32_t *status);
void latchPWMZero(void* digital_port_pointer, int32_t *status);
void setPWMPeriodScale(void* digital_port_pointer, uint32_t squelchMask, int32_t *status);
void* allocatePWM(int32_t *status);
void freePWM(void* pwmGenerator, int32_t *status);
void setPWMRate(double rate, int32_t *status);
void setPWMDutyCycle(void* pwmGenerator, double dutyCycle, int32_t *status);
void setPWMOutputChannel(void* pwmGenerator, uint32_t pin, int32_t *status);
void setRelayForward(void* digital_port_pointer, bool on, int32_t *status);
void setRelayReverse(void* digital_port_pointer, bool on, int32_t *status);
bool getRelayForward(void* digital_port_pointer, int32_t *status);
bool getRelayReverse(void* digital_port_pointer, int32_t *status);
bool allocateDIO(void* digital_port_pointer, bool input, int32_t *status);
void freeDIO(void* digital_port_pointer, int32_t *status);
void setDIO(void* digital_port_pointer, short value, int32_t *status);
bool getDIO(void* digital_port_pointer, int32_t *status);
bool getDIODirection(void* digital_port_pointer, int32_t *status);
void pulse(void* digital_port_pointer, double pulseLength, int32_t *status);
bool isPulsing(void* digital_port_pointer, int32_t *status);
bool isAnyPulsing(int32_t *status);
void setFilterSelect(void* digital_port_pointer, int filter_index,
int32_t* status);
int getFilterSelect(void* digital_port_pointer, int32_t* status);
void setFilterPeriod(int filter_index, uint32_t value, int32_t* status);
uint32_t getFilterPeriod(int filter_index, int32_t* status);
void* initializeCounter(Mode mode, uint32_t *index, int32_t *status);
void freeCounter(void* counter_pointer, int32_t *status);
void setCounterAverageSize(void* counter_pointer, int32_t size, int32_t *status);
void setCounterUpSource(void* counter_pointer, uint32_t pin, bool analogTrigger, int32_t *status);
void setCounterUpSourceEdge(void* counter_pointer, bool risingEdge, bool fallingEdge,
int32_t *status);
void clearCounterUpSource(void* counter_pointer, int32_t *status);
void setCounterDownSource(void* counter_pointer, uint32_t pin, bool analogTrigger, int32_t *status);
void setCounterDownSourceEdge(void* counter_pointer, bool risingEdge, bool fallingEdge,
int32_t *status);
void clearCounterDownSource(void* counter_pointer, int32_t *status);
void setCounterUpDownMode(void* counter_pointer, int32_t *status);
void setCounterExternalDirectionMode(void* counter_pointer, int32_t *status);
void setCounterSemiPeriodMode(void* counter_pointer, bool highSemiPeriod, int32_t *status);
void setCounterPulseLengthMode(void* counter_pointer, double threshold, int32_t *status);
int32_t getCounterSamplesToAverage(void* counter_pointer, int32_t *status);
void setCounterSamplesToAverage(void* counter_pointer, int samplesToAverage, int32_t *status);
void resetCounter(void* counter_pointer, int32_t *status);
int32_t getCounter(void* counter_pointer, int32_t *status);
double getCounterPeriod(void* counter_pointer, int32_t *status);
void setCounterMaxPeriod(void* counter_pointer, double maxPeriod, int32_t *status);
void setCounterUpdateWhenEmpty(void* counter_pointer, bool enabled, int32_t *status);
bool getCounterStopped(void* counter_pointer, int32_t *status);
bool getCounterDirection(void* counter_pointer, int32_t *status);
void setCounterReverseDirection(void* counter_pointer, bool reverseDirection, int32_t *status);
void* initializeEncoder(uint8_t port_a_module, uint32_t port_a_pin, bool port_a_analog_trigger,
uint8_t port_b_module, uint32_t port_b_pin, bool port_b_analog_trigger,
bool reverseDirection, int32_t *index, int32_t *status); // TODO: fix routing
void freeEncoder(void* encoder_pointer, int32_t *status);
void resetEncoder(void* encoder_pointer, int32_t *status);
int32_t getEncoder(void* encoder_pointer, int32_t *status); // Raw value
double getEncoderPeriod(void* encoder_pointer, int32_t *status);
void setEncoderMaxPeriod(void* encoder_pointer, double maxPeriod, int32_t *status);
bool getEncoderStopped(void* encoder_pointer, int32_t *status);
bool getEncoderDirection(void* encoder_pointer, int32_t *status);
void setEncoderReverseDirection(void* encoder_pointer, bool reverseDirection, int32_t *status);
void setEncoderSamplesToAverage(void* encoder_pointer, uint32_t samplesToAverage,
int32_t *status);
uint32_t getEncoderSamplesToAverage(void* encoder_pointer, int32_t *status);
void setEncoderIndexSource(void *encoder_pointer, uint32_t pin, bool analogTrigger, bool activeHigh,
bool edgeSensitive, int32_t *status);
uint16_t getLoopTiming(int32_t *status);
void spiInitialize(uint8_t port, int32_t *status);
int32_t spiTransaction(uint8_t port, uint8_t *dataToSend, uint8_t *dataReceived, uint8_t size);
int32_t spiWrite(uint8_t port, uint8_t* dataToSend, uint8_t sendSize);
int32_t spiRead(uint8_t port, uint8_t *buffer, uint8_t count);
void spiClose(uint8_t port);
void spiSetSpeed(uint8_t port, uint32_t speed);
void spiSetOpts(uint8_t port, int msb_first, int sample_on_trailing, int clk_idle_high);
void spiSetChipSelectActiveHigh(uint8_t port, int32_t *status);
void spiSetChipSelectActiveLow(uint8_t port, int32_t *status);
int32_t spiGetHandle(uint8_t port);
void spiSetHandle(uint8_t port, int32_t handle);
void spiInitAccumulator(uint8_t port, uint32_t period, uint32_t cmd,
uint8_t xfer_size, uint32_t valid_mask,
uint32_t valid_value, uint8_t data_shift,
uint8_t data_size, bool is_signed, bool big_endian,
int32_t *status);
void spiFreeAccumulator(uint8_t port, int32_t *status);
void spiResetAccumulator(uint8_t port, int32_t *status);
void spiSetAccumulatorCenter(uint8_t port, int32_t center, int32_t *status);
void spiSetAccumulatorDeadband(uint8_t port, int32_t deadband, int32_t *status);
int32_t spiGetAccumulatorLastValue(uint8_t port, int32_t *status);
int64_t spiGetAccumulatorValue(uint8_t port, int32_t *status);
uint32_t spiGetAccumulatorCount(uint8_t port, int32_t *status);
double spiGetAccumulatorAverage(uint8_t port, int32_t *status);
void spiGetAccumulatorOutput(uint8_t port, int64_t *value, uint32_t *count,
int32_t *status);
void i2CInitialize(uint8_t port, int32_t *status);
int32_t i2CTransaction(uint8_t port, uint8_t deviceAddress, uint8_t *dataToSend, uint8_t sendSize, uint8_t *dataReceived, uint8_t receiveSize);
int32_t i2CWrite(uint8_t port, uint8_t deviceAddress, uint8_t *dataToSend, uint8_t sendSize);
int32_t i2CRead(uint8_t port, uint8_t deviceAddress, uint8_t *buffer, uint8_t count);
void i2CClose(uint8_t port);
//// Float JNA Hack
// double
void setPWMRateIntHack(int rate, int32_t *status);
void setPWMDutyCycleIntHack(void* pwmGenerator, int32_t dutyCycle, int32_t *status);
}