This repository has been archived on 2020-09-21. You can view files and clone it, but cannot push or open issues or pull requests.
FRC2016-old/Robot2016/wpilib/cpp/current/include/llvm/StringRef.h

540 lines
18 KiB
C
Raw Normal View History

//===--- StringRef.h - Constant String Reference Wrapper --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGREF_H
#define LLVM_ADT_STRINGREF_H
#include <algorithm>
#include <cassert>
#include <cstring>
#include <limits>
#include <ostream>
#include <string>
#include <utility>
namespace llvm {
template <typename T>
class SmallVectorImpl;
class StringRef;
/// Helper functions for StringRef::getAsInteger.
bool getAsUnsignedInteger(StringRef Str, unsigned Radix,
unsigned long long &Result);
bool getAsSignedInteger(StringRef Str, unsigned Radix, long long &Result);
/// StringRef - Represent a constant reference to a string, i.e. a character
/// array and a length, which need not be null terminated.
///
/// This class does not own the string data, it is expected to be used in
/// situations where the character data resides in some other buffer, whose
/// lifetime extends past that of the StringRef. For this reason, it is not in
/// general safe to store a StringRef.
class StringRef {
public:
typedef const char *iterator;
typedef const char *const_iterator;
static const size_t npos = ~size_t(0);
typedef size_t size_type;
private:
/// The start of the string, in an external buffer.
const char *Data;
/// The length of the string.
size_t Length;
// Workaround memcmp issue with null pointers (undefined behavior)
// by providing a specialized version
static int compareMemory(const char *Lhs, const char *Rhs, size_t Length) {
if (Length == 0) { return 0; }
return ::memcmp(Lhs,Rhs,Length);
}
public:
/// @name Constructors
/// @{
/// Construct an empty string ref.
/*implicit*/ StringRef() : Data(nullptr), Length(0) {}
/// Construct a string ref from a cstring.
/*implicit*/ StringRef(const char *Str)
: Data(Str) {
assert(Str && "StringRef cannot be built from a NULL argument");
Length = ::strlen(Str); // invoking strlen(NULL) is undefined behavior
}
/// Construct a string ref from a pointer and length.
/*implicit*/ StringRef(const char *data, size_t length)
: Data(data), Length(length) {
assert((data || length == 0) &&
"StringRef cannot be built from a NULL argument with non-null length");
}
/// Construct a string ref from an std::string.
/*implicit*/ StringRef(const std::string &Str)
: Data(Str.data()), Length(Str.length()) {}
/// @}
/// @name Iterators
/// @{
iterator begin() const { return Data; }
iterator end() const { return Data + Length; }
const unsigned char *bytes_begin() const {
return reinterpret_cast<const unsigned char *>(begin());
}
const unsigned char *bytes_end() const {
return reinterpret_cast<const unsigned char *>(end());
}
/// @}
/// @name String Operations
/// @{
/// data - Get a pointer to the start of the string (which may not be null
/// terminated).
const char *data() const { return Data; }
/// empty - Check if the string is empty.
bool empty() const { return Length == 0; }
/// size - Get the string size.
size_t size() const { return Length; }
/// front - Get the first character in the string.
char front() const {
assert(!empty());
return Data[0];
}
/// back - Get the last character in the string.
char back() const {
assert(!empty());
return Data[Length-1];
}
// copy - Allocate copy in Allocator and return StringRef to it.
template <typename Allocator> StringRef copy(Allocator &A) const {
char *S = A.template Allocate<char>(Length);
std::copy(begin(), end(), S);
return StringRef(S, Length);
}
/// equals - Check for string equality, this is more efficient than
/// compare() when the relative ordering of inequal strings isn't needed.
bool equals(StringRef RHS) const {
return (Length == RHS.Length &&
compareMemory(Data, RHS.Data, RHS.Length) == 0);
}
/// equals_lower - Check for string equality, ignoring case.
bool equals_lower(StringRef RHS) const {
return Length == RHS.Length && compare_lower(RHS) == 0;
}
/// compare - Compare two strings; the result is -1, 0, or 1 if this string
/// is lexicographically less than, equal to, or greater than the \p RHS.
int compare(StringRef RHS) const {
// Check the prefix for a mismatch.
if (int Res = compareMemory(Data, RHS.Data, std::min(Length, RHS.Length)))
return Res < 0 ? -1 : 1;
// Otherwise the prefixes match, so we only need to check the lengths.
if (Length == RHS.Length)
return 0;
return Length < RHS.Length ? -1 : 1;
}
/// compare_lower - Compare two strings, ignoring case.
int compare_lower(StringRef RHS) const;
/// compare_numeric - Compare two strings, treating sequences of digits as
/// numbers.
int compare_numeric(StringRef RHS) const;
/// str - Get the contents as an std::string.
std::string str() const {
if (!Data) return std::string();
return std::string(Data, Length);
}
/// @}
/// @name Operator Overloads
/// @{
char operator[](size_t Index) const {
assert(Index < Length && "Invalid index!");
return Data[Index];
}
/// @}
/// @name Type Conversions
/// @{
operator std::string() const {
return str();
}
/// @}
/// @name String Predicates
/// @{
/// Check if this string starts with the given \p Prefix.
bool startswith(StringRef Prefix) const {
return Length >= Prefix.Length &&
compareMemory(Data, Prefix.Data, Prefix.Length) == 0;
}
/// Check if this string starts with the given \p Prefix, ignoring case.
bool startswith_lower(StringRef Prefix) const;
/// Check if this string ends with the given \p Suffix.
bool endswith(StringRef Suffix) const {
return Length >= Suffix.Length &&
compareMemory(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
}
/// Check if this string ends with the given \p Suffix, ignoring case.
bool endswith_lower(StringRef Suffix) const;
/// @}
/// @name String Searching
/// @{
/// Search for the first character \p C in the string.
///
/// \returns The index of the first occurrence of \p C, or npos if not
/// found.
size_t find(char C, size_t From = 0) const {
size_t FindBegin = std::min(From, Length);
if (FindBegin < Length) { // Avoid calling memchr with nullptr.
// Just forward to memchr, which is faster than a hand-rolled loop.
if (const void *P = ::memchr(Data + FindBegin, C, Length - FindBegin))
return static_cast<const char *>(P) - Data;
}
return npos;
}
/// Search for the first string \p Str in the string.
///
/// \returns The index of the first occurrence of \p Str, or npos if not
/// found.
size_t find(StringRef Str, size_t From = 0) const;
/// Search for the last character \p C in the string.
///
/// \returns The index of the last occurrence of \p C, or npos if not
/// found.
size_t rfind(char C, size_t From = npos) const {
From = std::min(From, Length);
size_t i = From;
while (i != 0) {
--i;
if (Data[i] == C)
return i;
}
return npos;
}
/// Search for the last string \p Str in the string.
///
/// \returns The index of the last occurrence of \p Str, or npos if not
/// found.
size_t rfind(StringRef Str) const;
/// Find the first character in the string that is \p C, or npos if not
/// found. Same as find.
size_t find_first_of(char C, size_t From = 0) const {
return find(C, From);
}
/// Find the first character in the string that is in \p Chars, or npos if
/// not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_first_of(StringRef Chars, size_t From = 0) const;
/// Find the first character in the string that is not \p C or npos if not
/// found.
size_t find_first_not_of(char C, size_t From = 0) const;
/// Find the first character in the string that is not in the string
/// \p Chars, or npos if not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_first_not_of(StringRef Chars, size_t From = 0) const;
/// Find the last character in the string that is \p C, or npos if not
/// found.
size_t find_last_of(char C, size_t From = npos) const {
return rfind(C, From);
}
/// Find the last character in the string that is in \p C, or npos if not
/// found.
///
/// Complexity: O(size() + Chars.size())
size_t find_last_of(StringRef Chars, size_t From = npos) const;
/// Find the last character in the string that is not \p C, or npos if not
/// found.
size_t find_last_not_of(char C, size_t From = npos) const;
/// Find the last character in the string that is not in \p Chars, or
/// npos if not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_last_not_of(StringRef Chars, size_t From = npos) const;
/// @}
/// @name Helpful Algorithms
/// @{
/// Return the number of occurrences of \p C in the string.
size_t count(char C) const {
size_t Count = 0;
for (size_t i = 0, e = Length; i != e; ++i)
if (Data[i] == C)
++Count;
return Count;
}
/// Return the number of non-overlapped occurrences of \p Str in
/// the string.
size_t count(StringRef Str) const;
/// Parse the current string as an integer of the specified radix. If
/// \p Radix is specified as zero, this does radix autosensing using
/// extended C rules: 0 is octal, 0x is hex, 0b is binary.
///
/// If the string is invalid or if only a subset of the string is valid,
/// this returns true to signify the error. The string is considered
/// erroneous if empty or if it overflows T.
template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type
getAsInteger(unsigned Radix, T &Result) const {
long long LLVal;
if (getAsSignedInteger(*this, Radix, LLVal) ||
static_cast<T>(LLVal) != LLVal)
return true;
Result = LLVal;
return false;
}
template <typename T>
typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type
getAsInteger(unsigned Radix, T &Result) const {
unsigned long long ULLVal;
// The additional cast to unsigned long long is required to avoid the
// Visual C++ warning C4805: '!=' : unsafe mix of type 'bool' and type
// 'unsigned __int64' when instantiating getAsInteger with T = bool.
if (getAsUnsignedInteger(*this, Radix, ULLVal) ||
static_cast<unsigned long long>(static_cast<T>(ULLVal)) != ULLVal)
return true;
Result = ULLVal;
return false;
}
/// @}
/// @name String Operations
/// @{
// Convert the given ASCII string to lowercase.
std::string lower() const;
/// Convert the given ASCII string to uppercase.
std::string upper() const;
/// @}
/// @name Substring Operations
/// @{
/// Return a reference to the substring from [Start, Start + N).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param N The number of characters to included in the substring. If N
/// exceeds the number of characters remaining in the string, the string
/// suffix (starting with \p Start) will be returned.
StringRef substr(size_t Start, size_t N = npos) const {
Start = std::min(Start, Length);
return StringRef(Data + Start, std::min(N, Length - Start));
}
/// Return a StringRef equal to 'this' but with the first \p N elements
/// dropped.
StringRef drop_front(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return substr(N);
}
/// Return a StringRef equal to 'this' but with the last \p N elements
/// dropped.
StringRef drop_back(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return substr(0, size()-N);
}
/// Return a reference to the substring from [Start, End).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param End The index following the last character to include in the
/// substring. If this is npos, or less than \p Start, or exceeds the
/// number of characters remaining in the string, the string suffix
/// (starting with \p Start) will be returned.
StringRef slice(size_t Start, size_t End) const {
Start = std::min(Start, Length);
End = std::min(std::max(Start, End), Length);
return StringRef(Data + Start, End - Start);
}
/// Split into two substrings around the first occurrence of a separator
/// character.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// maximal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator The character to split on.
/// \returns The split substrings.
std::pair<StringRef, StringRef> split(char Separator) const {
size_t Idx = find(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx+1, npos));
}
/// Split into two substrings around the first occurrence of a separator
/// string.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// maximal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator - The string to split on.
/// \return - The split substrings.
std::pair<StringRef, StringRef> split(StringRef Separator) const {
size_t Idx = find(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx + Separator.size(), npos));
}
/// Split into substrings around the occurrences of a separator string.
///
/// Each substring is stored in \p A. If \p MaxSplit is >= 0, at most
/// \p MaxSplit splits are done and consequently <= \p MaxSplit
/// elements are added to A.
/// If \p KeepEmpty is false, empty strings are not added to \p A. They
/// still count when considering \p MaxSplit
/// An useful invariant is that
/// Separator.join(A) == *this if MaxSplit == -1 and KeepEmpty == true
///
/// \param A - Where to put the substrings.
/// \param Separator - The string to split on.
/// \param MaxSplit - The maximum number of times the string is split.
/// \param KeepEmpty - True if empty substring should be added.
void split(SmallVectorImpl<StringRef> &A,
StringRef Separator, int MaxSplit = -1,
bool KeepEmpty = true) const;
/// Split into two substrings around the last occurrence of a separator
/// character.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// minimal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator - The character to split on.
/// \return - The split substrings.
std::pair<StringRef, StringRef> rsplit(char Separator) const {
size_t Idx = rfind(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx+1, npos));
}
/// Return string with consecutive characters in \p Chars starting from
/// the left removed.
StringRef ltrim(StringRef Chars = " \t\n\v\f\r") const {
return drop_front(std::min(Length, find_first_not_of(Chars)));
}
/// Return string with consecutive characters in \p Chars starting from
/// the right removed.
StringRef rtrim(StringRef Chars = " \t\n\v\f\r") const {
return drop_back(Length - std::min(Length, find_last_not_of(Chars) + 1));
}
/// Return string with consecutive characters in \p Chars starting from
/// the left and right removed.
StringRef trim(StringRef Chars = " \t\n\v\f\r") const {
return ltrim(Chars).rtrim(Chars);
}
/// @}
};
/// @name StringRef Comparison Operators
/// @{
inline bool operator==(StringRef LHS, StringRef RHS) {
return LHS.equals(RHS);
}
inline bool operator!=(StringRef LHS, StringRef RHS) {
return !(LHS == RHS);
}
inline bool operator<(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) == -1;
}
inline bool operator<=(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) != 1;
}
inline bool operator>(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) == 1;
}
inline bool operator>=(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) != -1;
}
inline std::string &operator+=(std::string &buffer, StringRef string) {
return buffer.append(string.data(), string.size());
}
inline std::ostream &operator<<(std::ostream &os, StringRef string) {
os.write(string.data(), string.size());
return os;
}
/// @}
// StringRefs can be treated like a POD type.
template <typename T> struct isPodLike;
template <> struct isPodLike<StringRef> { static const bool value = true; };
} // namespace llvm
#endif